Teaching Mathematics: Dialogues Between Situated Learning Perspective and Wittgenstein's Language Games
International Educational Review, Volume 3, Issue 1, April 2025, pp. 45-59
OPEN ACCESS VIEWS: 132 DOWNLOADS: 44 Publication date: 15 Apr 2025
OPEN ACCESS VIEWS: 132 DOWNLOADS: 44 Publication date: 15 Apr 2025
ABSTRACT
This paper fosters a dialogue between L. Wittgenstein's concept of "language games" and J. Lave and E. Wenger's theory of "situated learning.” It posits that mathematics is not a discovery, but a invention, a culturally embedded practice shaped by social interactions and contextual influences. The discussion emphasizes that mathematical understanding is deeply rooted in the activities through which mathematical objects are created and explored, viewing these objects as cultural artifacts. The article advocates for an educational paradigm that recognizes the contextual and socially situated nature of mathematics, thereby democratizing access to mathematical knowledge and challenging entrenched hierarchies within mathematical practices.
KEYWORDS
Language games, Situated learning, Mathematics Education.
CITATION (APA)
Silva, D. R. (2025). Teaching Mathematics: Dialogues Between Situated Learning Perspective and Wittgenstein's Language Games. International Educational Review, 3(1), 45-59. https://doi.org/10.58693/ier.314
REFERENCES
- Augustine. (1973). De magistro. São Paulo: Abril, Coleção Os Pensadores.
- Chouliaraki, L. (2008). Discourse analysis. In T. Bennett & J. Frow (Eds.), The SAGE handbook of cultural analysis. London: SAGE Publications.
- D’Amore, B. (2005). Epistemologia e didática da matemática. São Paulo: Escrituras.
- Gerrard, S. (1987). Wittgenstein in transition: The philosophy of mathematics. Chicago: The University of Chicago.
- Gerrard, S. (1991). Wittgenstein’s philosophies of mathematics. In Synthese, 87, 125-142. New York: Kluwer Academic Publishers. https://doi.org/10.1007/BF00485331.
- Glock, H.-J. (1998). Dicionário Wittgenstein (H. Martins, Trans.). Rio de Janeiro: Jorge Zahar Ed.
- Gottschalk, C. (2004). A natureza do conhecimento matemático sob a perspectiva de Wittgenstein: Algumas implicações educacionais. Cadernos de História Filosofia e Ciências, 14(2), 305–334.
- Hardy, G. H. (2000). Em defesa de um matemático (L. C. Borges, Trans.). São Paulo: Martins Fontes.
- Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life. Cambridge: Cambridge University Press.
- Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture and Activity, 3(3), 149-164. https://doi.org/10.1207/s15327884mca0303_2
- Lave, J. (2015). Aprendizagem como/na prática. Horizontes Antropológicos, 21(37), 37–47.
- Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge: Cambridge University Press.
- Moreno, A. R. (1993). Wittgenstein através das imagens. Campinas: UNICAMP.
- Otte, M. (2005). Mathematics, sign and activity. In M. H. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign: Grounding mathematics education. New York: Springer.
- Vilela, D. S. (2013). Usos e jogos de linguagem na matemática: Diálogos entre filosofia e educação matemática. São Paulo: Livraria da Física.
- Wenger, E. (1998). Communities of practice: Learning, meaning and identity. New York: Cambridge University Press.
- Wittgenstein, L. (2009). Philosophical investigations (4th ed., G. E. M. Anscombe, P. M. S. Hacker, & J. Schulte, Trans.). Malden, MA: Wiley-Blackwell.
LICENSE

This work is licensed under a Creative Commons Attribution 4.0 International License.